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G E N E R A L I Z E D  M O D E L S  OF T H E  C O S S E R A T  T Y P E  

F O R  F I N I T E  D E F O R M A T I O N  ANALYSIS  OF T H I N  B O D I E S  

L. I. S h k u t i n  UDC 539.370 

This work contains new invariant formulations of generalized models for analysis of the finite 
deformations of shell- and rod-shaped bodies with independent fields of finite displacements and rotations of 
material elements. They are obtained from a new invariant formulation of the nonlinear Cauchy model for a 
three-dimensional body with explicit isolation of local rotations. A two-dimensional generalized model of shell 
deformation is a consequence of the assumption of rigidly rotating transverse fibers. The three translational 
and two rotational degrees of freedom of a fiber form a system of five primary unknown variables of the 
generalized model. The absence of any independent rotation of the fiber relative to itself differentiates this 
system from the Cosserat axiomatic model of a deformable surface. A one-dimensional generalized model of a 
deformable rod is a consequence of the assumption of rigidly rotating cross-sections. The three translational 
and two rotational degrees of freedom of a cross-section form a system of six primary unknown variables of the 
generalized model. Its identity to the Cosserat axiomatic model of a deformable line with certain agreement 
between force parameters is established. In addition to the Cosserat axiomatic formulations, the generalized 
models include constitutive relations of a real material and equations for reconstruction of displacements, 
strains, and stresses in the volume of a real body. 

The term thin bodies combines shells, plates, and rods. Such bodies are divided into two groups: shell- 
shaped and rod-shaped bodies. The first group includes shells, plates , and, if necessary, thin-walled rods, and 
the second one includes beams and rods with rigid cross-sections. A distinctive feature of a thin body is its 
small flexural rigidity in the direction of the small dimension. It can be strongly deflected under load, i.e., it 
undergoes strain with large gradients of displacements and rotations of material elements. 

The geometrical features of thin bodies have made it possible to develop special mathematical models 
of their deformation that differ from the classical Cauchy models. Two approaches to modeling of deformations 
of thin bodies can be distinguished in the scientific literature: the aziomatic (direct) approach and the 
approzimation approach. The first approach treats a shell as a material surface (two-dimensional object), 
considers a rod as a material line (one-dimensional object), determines the laws of their deformation under 
the action of generalized external and internal forces, and endows each material particle (a point of the object) 
not only with position (as in the Cauchy model) but also with orientation degrees of freedom. Axiomatic 
formulations of the deformation relations for flexible fibers and rods are known from the works of J. Bernoulli 
and L. Euler. They were generalized and extended to plates and shells by Cosserat et al. [1, 2]. The work of 
Ericksen and Truesdell [3] initiated a number of publications on constructing axiomatic models for deformation 
of media of any dimension with orientation degrees of freedom. A review of papers concerned with thin bodies 
can be found in [4, 5]. 

In the approximation approach, a shell and a rod are three-dimensional deformable Cauchy objects. 
A decrease in dimension is achieved by one or another approximation of the volume displacement field in 
the "thin" directions and by using the method of moments. Approximation formulations of the deformation 
equations for plates and rods are known from the works of A. Cauchy, S. Poisson, and G. Kirchhoff; they 
are extended to shells by H. Aron and A. Love. They have been improved and generalized up to the present 
time [6]. 
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As a result, both approaches give moment models for deformation of thin bodies. These models axe 
defined in a space of a smaller dimension than that of physical space. Two-dimensional models correspond 
to shell-shaped bodies and one-dimensionM models correspond to rod-shaped ones. While approximation 
models derived from the Cauchy model usually treat displacements as primary unknown variables, axiomatic 
models also assign rotations of local elements to primary unknown variables. This initial difference hinders 
comparative analysis of the competing models in nonlinear formulations. 

This paper is devoted to approximation modeling of finite deformations of thin bodies and to 
comparison of the generalized models with the Cosserat axiomatic models. The concept of explicit isolation 
of the field of finite rotations in the nonlinear Cauchy continuum is used in the formulation of the initial 
three-dimensionM problem of thin-body deformation. This concept was originated by G. Kirchhoff. In due 
time he went beyond the scope of linear elasticity theory by applying it to small prismatic volumes of a plate 
and a rod which experienced finite rotations as a result of deformation. The Kirchhoff analysis was extended 
to shells by A. Love, who retained the assumption that the deformation of a prismatic volume during its 
rotation is linear in character. AlumyaA et al. [7-9] gave a consistent nonlinear formulation of the Kirchhoff- 
Love variant for shells with isolation of finite rotations of linear elements. An extended model, which took into 
account transverse shears during finite rotations, was formulated by Sirnmonds et al. [10, 11]. The additional 
effect of transverse tension or compression is introduced into the model in [12, 13]. Shkutin [13] analyzed 
different variants of isolation of the finite-rotation field and determined that the variant of [10] is closest in 
its mathematical formulation to the Cosserat model. In the same work, a one-dimensional nonlinear model 
for spatial bending of a rod is developed by means of an approximation approach. This model is identical in 
its mathematical formulation to the Cosserat model of a deformable line. 

The present work contains new invaxiant formulations of approximation models for nonlinear bending of 
shell- and rod-shaped bodies with explicit isolation of finite rotations of material elements. They are obtained 
owing to the introduction of generalized force and deformation tensors, which are indifferent to rigid rotations 
and energetically conjugate in the metrics of the rotating basis. 

1. Isola t ion of  Local  R o t a t i o n s  in a Deformable  Cauchy  Body.  Let an arbitrary Cauchy body 
in its initial (unstressed) state occupy a region (volume) G with a boundary (surface) Av in physical space. 
The subscript v denotes surface orientation by the local unit normal vector ev. The region G is specified 
parametrically by a triplet of spatial coordinates tI. They are also Lagrangian coordinates of a material 
particle (point) of the body. The position of such a point is given by the position vector g(tI) in the initial 
configuration and by the vector g+(ti) in the deformed configuration. The triplet of vectors g+ = 0tg + forms 
a Lagrangian (material) coordinate basis g~'(g) with an initial value gt(g). In addition, a convective basis 
a~(g) with an initial value at(g),  which rotates at a point as a rigid unity, is introduced at each point. Here 
and below, the upper-case and lower-case Latin letters in the subscripts have values of 1, 2, and 3 and values 
of 1 and 2, respectively; the tensor summation convention is used; the possible time dependence is not shown 
explicitly; OI is the operator of partial differentiation with respect to the coordinate t I. 

The deformation of the Cauchy body in Lagrangian description is given by the mapping 

g --+ g+,  gI -+ g}~, g+ -- g + w,  g~" - 0 tg  +, (1.1) 

where w(g) is the local displacement vector. In its deformed (instantaneous) state, the body is subjected to 
the action of external forces, which are distributed over its surface and volume. The volume external forces, 
together with inertial forces, are given by the density vector p0(g) per initial unit volume, and the surface 
forces are given by the density vector p~ E Au) per initial unit area. The internal stress field is introduced 
by the first Piola tensor Zl(g). 

The balance of external and internal forces for an instantaneous state of the Cauchy body can be 
expressed by the equation of virtual work (weak formulation): 

f 
G Au 

Here dG and dAy are the differentials of volume and surface; ~ is the absolute variation operator; and OW ~ 
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is the virtual strain energy density per initial unit volume, which is given by the equality 

O w  o = zl .  6g}~ ( z /=  gl.  zl). (1.3) 
The triplet of contravariant stress vectors z/(g) obeys a local equation for balance of moments: 

z I x g l  ---O. (1.4)  

The convective basis a}(g) is introduced by the orthogonal mapping 

a? = " x - e ,  e - a /a~,  ~ .  e - 1, (1.5) 

where O(g)  and O(g)  are the mutually transposed tensors of finite rotation (rotators); 1 is the ordinary 
tensor. Differentiation of the vectors of the convective basis can be expressed by the transformation 

0 / 4  = -a~ .  cO, -C? = C~ = X x 4 = 4 x X. (1.6) 

Here C~(g) and c?(g) are an antisymmetric tensor and the accompanying vector of the torsional flexure of 
the coordinate line t / w i t h  initial values C/ (g)  and c/(g), respectively. The following rules of variation are 
valid: 

5 0  = - e .  f~, 5a~r = - a ~ - n ,  - ~ =  n = 1 x co = to x 1. (1.7)  

They introduce the spin i2(g) and vector co(g) of virtual rotation. 
The second equality of (1.7) makes it possible to introduce the operator of corotational variation 50 

such that 

5on ~ = ha? + a ~ �9 n -- o. (1 .s)  

Its application to the vector g/+ gives the mutually reversible equalities 

50g + = 5g} I" + g+ x co, 5g + = 50g} l" - g+ x co, (1.9) 

which are valid for any vector given in the convective basis. RepIacement of the vector 5g + in (1.3) by its 
value in (1.9) and use of Eq. (1.4) lead to the following formula for the virtual strain energy: 

O W  ~ = z I .  60g~-. (1.10) 

It suggests a constructive representation of the material basis by the local transformation 

I s,-,+ G+j - g+-a~, (l.li) g~ = 4 G+. c +  = 4 s t  = aoao~.. .  

with the unknown distortion tensor G+(g) ,  which is not a metric tensor of the material basis. 
The additive decomposition 

G + = G  ~  G ~  , G I s = g i ' a j  (1.12) 

introduces the deviation tensor 

/ s (1.13) W = G + - G o = %% WIj, W / j  = G~[j - G I j  

with convective components Wzj(g) and with zero value in the initial state. The equalities 

~"  = a / w / ,  w I =  aJoWIj = g+ - gI" e ,  (1.14) 

which are equivalent to (1.13), give a dyadic expansion of the deviation tensor and express it in terms of the 
displacement vector and the rotation tensor; wi(g)  are three deviation vectors. 

The equalities 

~0g~ = a ? .  ~ 0 c +  = a ~ �9 ~ 0 W  = ~ 0 w i ,  (1.15) 

follow from (1.11)-(1.14), where the quantities 

I J + aloaJo~Wl J (1.16) 50G + - aoaohGIj ,  50W -- 
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have the meaning of corotational variations of tensors. Their components are calculated from the formula 

sw. = bc j = b0g? = + • (1.17) 

Substitution of (1.15) into (1.10) makes it possible to represent the quantity cOW ~ as the equalities 

OW 0 = z I �9 b 0 w / =  Z" "(~0W = ZIJbwIJ (1.1s) 
with the new stress tensor 

o o ,-,IJ Z I J  z / .  ag, (1.19) Z _~ a?z I ~ a l a j ~  , 

which is related to the Piola tensor by the transformation 

Z = O .  a .  Zl. (1.20) 

In accordance with (1.18), the tensor W can serve as a measure of strain which is energetically 
conjugated with the stress tensor Z. However, first it is necessary to eliminate the arbitrariness in the definition 
of the tensor W.  Orthogonal mapping (1.5) introduces into the Cauchy model an arbitrary rotator O, which 
has, as a vector, three degrees of freedom. Transformation (1.11), unlike the polar decomposition of the position 
gradient, defines the distortion tensor with rotational arbitrariness. Such arbitrariness can he eliminated by 
an additional condition of symmetry of the deviation tensor: 

WjI = WIj.  (1.21a) 

In this case, transformation (1.11) is equivalent to polar decomposition. The symmetric tensor contains six 
independent components, as does the triangular tensor. Therefore, instead of (1.21 a), we can use the alternative 
variants 

W32 -- W31 =-- W2t -- 0; (1.21b) 

W23 = W l s  -- W12 = 0. (1.21c) 

A tensor with an upper triangular matrix of components corresponds to the first variant, and a tensor with 
a lower triangular matrix corresponds to the second variant. In the case of variant (1.21a), transformations 
(1.5) and (1.11) isolate a certain averaged rotation of the instantaneou~ basis about the initial basis, while 
in variants (1.21b) and (1.21c,) they bring into coincidence the directions of individual basis vectors: a ~ with 
g+, or a ~ with g+. In isolating local rotations of thin bodies, variants (1.21b) and (1.21c) are preferable to 
variant (1.21a). 

After the rotator is made to obey one of the variants of kinematic relations (1.21), the tensor W,  which 
is defined by equality (1.13), takes the meaning of a strain tensor which is energetically conjugated with the 
stress tensor (1.20). Both tensors are, by definition, indifferent to rigid rotations. 

The resulting kinematic and dynamic equations must be supplemented by a formulation of relations 
for the deformative properties of the material. In particular, the purely mechanical processes of elastic and 
elastoplastic deformation of many construction materials are described by the linear incremental relation 

~i0Z = D . - b o W  (1.22) 

with the tensor of properties D (of the fourth rank), which can take into account the influence of the prehistory 
of loading. Incremental strain is calculated from increments of displacement and rotation vectors, by a formula 
of the form of (1.17). Relation (1.22) must obey condition (1.4), which ensures symmetry of the Cauchy stress 
tensor. 

The formulation proposed is extended to a Cosserat deformable body by using the weak equation [5] 

/ ( p 0  .bw +q0  _owO)dc +/(p0. bw + q0  )dA = 0 (1.23) 
G Av 

with the virtual strain energy density 

OW ~ = Z- - / f0W + Y . .  b0V = ZIJbwI j  + YIJbvI9. (1.24) 
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In (1.23) and (1.24), q0(g) is the vector of volume external and inertial moments; q0(g e Av) is the vector of 
surface external moments; W(g)  is the metric strain tensor (1.13); Z(g) is the internal stress tensor (1.19); 
Y(g) is the internal moment tensor; V(g) is the bending tensor such that 

6oV = a~a~6Vij, 5Vl j  = a ~ .Olw. (1.25) 

Equations (1.23)-(1.25) contain, as primary unknown variables, the displacement vector w(g) and the 
rotation tensor | which has, as a vector, three scalar degrees of freedom. Comparison of (1.23) and (1.24) 
with (1.2) and (1.18) shows that the above formulation of the Cauchy body model is degenerate relative to 
the Cosserat model, in which all external and internal moments are assumed to be absent and the rotation 
tensor is related to the displacement vector by conditions of the form of (1.21). 

2. M o d e l  of t h e  Cossera t  T y p e  for a She l l -Shaped  Body.  A spatial system of coordinates is 
connected with the basic surface A of a shell so that tl and t2 are the internal parameters of the surface, and 
t3 is the transverse coordinate. The volume occupied by the shell is usually bounded by an end surface As 
and by two front surfaces A, .  The latter are given by the equation t3 = h, ,  where hi ~< t3 ~< h2 (hi and h2 
are known functions of a surface point or constant numbers). The surface A~ is oriented by the normal unit 
vector ejv(g E A~v). The differentials of the volume and the surfaces are determined by the equalities 

dG - Jdt3dA, dA - adtldt2, J =- gila, dAn =- jndA,  dan - jadtadC, (2.1) 

where g(g) and a(a) are the volume and surface Jacobians of the coordinate grid; j~c(g 6 Air) are the metric 
parameters of the surfaces; and dC is the differential of the boundary contour of the basic surface. 

As a solid body, the shell is given by the equation g = a + taaa, which expresses the volume position 
vector g(Q) in terms of two surface vectors: a position vector a(ti) and an orientation (normal) vector as(ti). 
Two local bases, a volume basis gr(g) and a surface basis ai(a), are introduced in the initial state. They are 
related by the translation 

g r = a  I . G ,  G = a l g l = a l a l G i j = A + t a B ,  A=alat=___araJA1j ,  
(2.2) 

A I j  =- a i .  a j ,  ai =- Oia, B = aibi =- aiaJBij, Bij = bi �9 aj, bi = Oia3. 

The surface tensors A(a)  and B(a)  determine the metrics and curvature of space in the vicinity of the basic 
S U r f a c e .  

Deformation of the shell-shaped body is studied within the framework of the Cauchy model and is 
described by local transformation (1.1). The volume external and inertial forces are given by the density 
vector p0(g). The surface force field is divided into three fields, which are given at the end and front surfaces 
by the density vectors P~v(g e Air). The virtual dynamic equation (1.2), which ensures the balance of external 
and internal forces in an instantaneous state, is formulated as 

h2 h2 

f [ / ( p ~ 1 7 6 1 7 6 1 7 6  (2.3) 
A h 1 _ A C h I 

where OW ~ is the volume density of virtual strain energy and 6w(n) is the value of the vector 6w on the 
surface A,. 

The basic surface and its basis are deformed together with the shell: a --+ a+(a) and aI --4 a+(a). 
A convective basis a~(a) with the initial value ai(a) is introduced o_u the deformed surface by the local 
transformation 

a~ = at" O, e - aXa~, 030 - 0 (2.4) 

with the tensor-rotator O(a). 
With the assumption that the shell remains a thin body, its instantaneous state is given by the equation 

g + = a  + + t a a  +, a + - a  ~ (2.5) 
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This  equation corresponds to a linear approximation of the volume displacement field relative to the transverse 
coordinate: 

w = u + t3v, u = a + -- a, v = a ~ - a3. (2.6) 

This relation gives the movement of a transverse material fiber of the shell as a rigid unit with translational 
displacement u(a)  and rotational displacement t3v(a). 

The change in the volume basis due to displacement (2.6) is expressed by the transformation 

I + I J : , +  _--A+ g~" = a } .  G +,  G +  - a o g l  = aoao ~ l J  Jr t3 B+,  

in which the surface tensors A+(a)  and B+(a)  are determined by the equalities 

x JA  + A+ --- 4 a ~  " = ahao IJ, A+t = a-'[ . a~ a + ~ Oia +, 

(2.7) 

(2.8) 
B+ = 4 b ,  =- 44B,~. B,~ =_ bt ~, b~ =_- o,a ~ 

Formulas (1.13), (2.2), and (2.7) make it possible to represent the shell strain tensor as a linear function of 
the transverse coordinate: 

W - -  G + - O -  G .  O - ~ W ~ j  = U + t3V. (2.9) 

It introduces the surface tensors U(a)  and V(a)  of metric and torsional-flexural deformations: 

U - - - A + - O  �9 A - O - a ~ a ~ U i j ,  Uij = A + - A i j ,  V _= B + - O  �9 B .  O - a ~ a { ~ i ,  ~ i  =- Bi + - BO. (2.10) 

They are both degenerate in the space of the convective basis. 
Substitution of approximations (2.6) and (2.9) into (2.3) and (1.18) and integration with respect to 

the transverse coordinate lead to an equation of virtual work in a two-dimensional formulation: 

/ [ p .  ~u + (a ~ • q ) . , ~  - OWldA +/[p3" ~u + (~0 • q3) . ,~ ldC = 0 (2.11) 
A C 

with the surface density of virtual strain energy 

h2 

O W -  / OW~ = x  i .  60a + + y i .  60b + = ~ . .  60U + Y - .  6 o V = X i J 6 U i j  + y i i 6 ~ j ,  (2.12) 

hi 

with the tensors of generalized internal forces and moments 

h2 h2 
/ OO..IJx," / oo..IJyi , . y  (2.13) X =-- ZJdt3 ~ a iayA , ~ a'o" X,  Y - ZJt3dt3 ~ a i a j I  , ~ a 0 

hl ht 

and with the vectors of generalized external forces and moments 

h2 h2 h2 h2 
[ f o. p _ po j .  + .  p o j ~ 3  ' p3 = .  poj~d~, q__ q . , . h .  + 

h 1 hi hi hi 

The kinematic variables in (2.11) and (2.12) are varied according to the formulas 

' ; ~  ~ob+. ~o~ + = ~ +  + a+ • ~, ~oU = a~:/o~U~j, ~U~s = ~ - ~ o ~  +, ~oV = aoao~V~j, ~ ;  = a, 
(2.15) 

60b + = Oiw • a ~ 60c 0 = Oiw, 6a~ -- Oi6u, 6a-~ = 6a~ =- 6v = w x a ~ 

Formula (1.6) is used to calculate derivatives of basis vectors. 
Formulas (2.7) contain the equality g+ = a ~ which orients the convective vector a ~ in the direction of 

the material vector g+. Owing to (2.4) and (2.6), this equation is formulated as 

v = a3 �9 O - a3.  (2.16) 
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This relation expresses definitively the independent vector of rotational displacement v(a)  in terms of the 
tensor rotator O(a).  The latter, however, is not completely defined by relation (2.16). This is obvious, because 
the equality ag = g+ does not orient the convective basis definitively: it leaves free the "drilling" rotation of 
the basis about the vector g3 +. This incomplete definition manifests itself clearly in the virtual formulation of 
relation (2.16): 

6v = - a  ~ [2 = ca x a ~ (2.17) 

This equality is fulfilled for an arbitrary value of the "drilling" component w3 = ca. a ~ = ca. g+ of the rotation 
vector. Within the framework of the Canchy model, this rotational degree of freedom must  be eliminated, for 
example, by the trivial condition 

~a - r a g -- 0. (2.18) 

It is most naturally consistent with Eq. (2.11), in which external forces do not do any work in the virtual 
rotation ~3. 

In all those cases where an explicit dependence of the stress tensor (I.19) on the volume strain tensor 
(1.13) is known, formulas (2.13) take the meaning of generalized constitutive equations. With incremental 
dependences (1.22), these formulas give the generalized equations 

h2 

~0X = D1 �9 -60U + D2 �9 -d;0V, 60Y = D2 . . 60U + Ds -  "60V, DN = / D J t ~ - I d t a .  

hi 

The tensors #0U and ~0V are calculated in terms of the independent incremental vectors 6u and ca from 
formulas of the form of (2.15). 

For sufficiently smooth force fields, virtual equation (2.11) can be transformed to the Galerkin form 

/((p+V~xi). :u+[a ~ x q+a~ + xxi+Vi(a~ x yi)]-~}dA+/[(p3-esixi). :u+(~-e3 iy i ) .  :v]dC=0, (2.19) 
A C 

where Vi is the operator of covariant differentiation on the initial basic surface and eai - e3-ai are components 
of the unit vector which is normal to the surface Aa and the contour C. Global equality (2.19) generates local 
dynamic equations, which are valid at internal points of the basic surface, and boundary conditions at its 
contour. As is evident from equality (2.17), the vector 6v has only two components in the convective basis. 
Therefore, the contour integral in (2.19) generates five scalar (kinematic or dynamic) conditions at the contour. 
The vectors/~v and to are orthogonal and, under condition (2.18), interchangeable. 

Two-dimensional equations (2.4), (2.8), and (2.10)-(2.18) form a weak formulation of the problem of 
deformation of the basic surface with independent fields of finite displacements and rotations of its material 
particle-points. Equalities (2.6) and (2.9) make it possible to reconstruct the volume fields of displacements 
and deformations of the shell. The stress field is calculated by volume constitutive relations (1.22) or by other 
relations. F, xtended system (2.4)-(2.18) formulates a generalized deformation model for a shell-shaped body 
with rigid transverse fibers and with separation of the finite-rotation field. Virtual equality (2.11) can be 
represented in the-form of (2.19) and replaced by local dynamic equations. The generalized model in such 
a purely mechanical formulation has five primary kinematic parameters: three components of translational 
displacement and two components of rotation, which are related hy a system of differential equations of the 
tenth order with respect to surface coordinates. 

The Cosserat surface strain model is formulated by the weak equation 

f (P " fU + CI " w - O W ) d A  + _/ (Da " ~u  + qa . co)dC = 0 

A C 

with the surface density of the virtual strain energy 

OW = ~ .  ~0a + + y~. Oiw. 

Here ca is the vector of virtual rotation with three degrees of freedom. The necessary and sufficient conditions 
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for transformation of the Cosserat model into the model of a shell with rigid transverse fibers are given by 
the equalities 

P, Pa = Pa, ~i " (2.20) = = x ' ,  ~ = a  ~  f f h = a  ~  • i = a  ~  i. 

They show that the generalized model of a shell, unlike the Cosserat model, excludes transverse components 
of the external and internal moment vectors. These additional parameters inherent in the Cosserat model 
are polar reactions of the deformed surface to "drilling" microrotations. In a shell considered a Cauchy body, 
independent microrotations are not possible and the associated reactions are absent. 

3. M o d e l  of  t h e  C o s s e r a t  T y p e  for a R o d - S h a p e d  Body.  A spatial system of coordinates is 
connected with the basic line (contour) Ca of a rod so that t3 is the internal parameter of the line and tt and 
t2 are the transverse coordinates. The volume occupied by the rod is usually bounded by a tubular surface 
A3 and two end surfaces An. The latter are given by ~he equation t3 = l, ,  so that 11 ~< t3 ~< 12 (11 and 12 are 
constant numbers). The surface A N  is oriented by the normal unit vector eN(g 6 AN).  The differentials of 
the volume and surfaces are defined by the equalities 

dG =_ Jd tadA ,  d A ,  = dA = dhdt2 ,  dAn = jadtadC, (3.1) 

where J(g)  is the Jacobian of the coordinate grid; ja(g 6 An) is the metric parameter of the tubular surface; 
A is an arbitrary cross section; and C is its contour. 

As a solid body the rod is given by the equation g = a + tiai, which expresses the volume position 
vector g(ti)  in terms of three contour vectors: a position vector at/a) and two orientation vectors ai(t3), which 
are normal to the basic line and to its tangential vector aa = 0an. In the initial state, two local bases are 
introduced: a volume basis gI(g) and a contour (orthogonal) basis az(a), which are related to each other by 
the translation: 

g l  = a l  " G ,  G - -  a l g i  ~_ a l a J G i j  = A + t i B i ,  A =- a l a l  =_ a l a J A i j ,  
(3.2) 

A I j  =- a I .  a j ,  a3 ---- 03a, Bi - a3bi - a 3 a l B i l ,  Big - bi �9 a j ,  bi =- 03ai. 

The contour tensors A(a) and Bi(a)  determine the metrics and curvature of space in the vicinity of the basic 
' line. 

Deformation of the rod-shaped body is studied within the framework of the Cauchy model and is 
described by local transformation (1.1). The volume external and inertial forces are given by the density 
vector pO(g). The surface force field is divided into three fields given at the tubular and end surfaces by the 
density vectors P~v(g 6 AN) .  The equation of virtual work (1.2) is formulated as 

C a A 0 3 C An 

Here aW ~ is the volume density of virtual strain energy and (fw(") is the value of the vector 6w at the end 
surface A..  

The basic line and its basis are deformed together with the rod: a --* a+(a) and at --+ a+(a).  The 
local transformation 

a~=al-@, @-ala~, Oi| (3.4) 
with the tensor rotator O(a) on the deformed line introduces a convective basis a~(a) with an initial value 
ai(a).  Under the assumption that the rod remains a thin body, its instantaneous state is given by the equation 

g+ = a+ + a,+ = a,~ (3.5) 

to which corresponds a linear approximation of the volume field of displacements relative to the transverse 
coordinates 

o (3.6) W = U + t i V i ,  U - -  a + - -  a ,  v i  - -  a i --  ai .  
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This relation gives the movement of the material cross section of the rod as a rigid unit with translational 
displacement u(a) and rotational displacement tivi(a). 

The change in the volume basis due to displacement (3.6) is expressed by the transformation 

I J.-~+ = A  + riB +, g ~ ' = a ~ . G  +, G + = a ~ g ~ ' = a o a o ~ t J  + 

in which the contour tensors A+(a )  and B+(a)  are defined by the equalities 

I + I J - +  A+j = a)-.  a ~ a + = 03a +, A+ = aoal = aoao/~lJ, 

(3.7) 

(3.8) 
' + ' JB+ b t . a  ~ b~ = 0,a ~ B + = a o b i  =aoa6  iJ' B + =  

Formulas (1.13), (3.2), and (3.7) make it possible to represent the strain tensor of the rod as a linear function 
of the transverse coordinates: 

w - G + - ~ .  G .  o - ~ w 3 s  = u + t ,v~.  (3.9) 

This function introduces the contour tensors U(a)  and V/(a) of metric and torsional-flexural deformations: 

U = A + - O .  A .  O = a~a~U3j, (]3.1 =- A+j - A3j, (3.10) 
v ,  - B + - ~ .  B , .  O - d a ~ R j ,  R j  -= B~) - B~j. 

They are both degenerate in the space of the convective basis. 
Substitution of approximations (3.6) and (3.9) into (3.3) and (1.18) and integration with respect to 

the cross section lead to the equation of virtual work in a one-dimensional formulation: 

f ( p .  + q - w  - + Pn" + qn" = (3.11) 6u OW)dt3 6u (n) oj(n) 0 
o3 

with the contour density of virtual strain energy, 

OW = f OW~ = x 3- ~oa3 + + y~- 6ob~ = X--6oV + Yi . .60Vi  = X3J~U3j + ~3J6~j, (3.12) 
A 

with the tensors of generalized internal forces and moments, 

f 0 0wlJ  X3 / 0 0--IJ 3 X =_ ZJdA = alaj.A , = a03- X, Yi ~ ZJtidA = a la j r  , Yi = ao 3" Yi, (3.13) 
A A 

and with the vectors of generalized external forces and moments, 

p =fP~176 qr~- a~176  dA, Prt =fp~ q-= a ~  ( fP~176 (3.14) 
A C An An A C 

The kinematic variables in (3.11) and (3.12) vary according to the formulas 

a~a ~"~ ~U.  aS ~0a~+, ~0V, d a 0 ~ ,  ~ = a ~ - ~ 0 b ? ,  6oU = o o~ = " = (3.15) 

0 0 6a + = 0 3 6 u ,  6a + = 6 a  ~  i. //oa3 + = 6 a  + + a  + x w ,  6 0 b / + = 0 3 w x a i ,  60ci =03w,  0 

It is seen that the variations of metric and torsional-flexural deformations are definitively expressed in terms 
of two independent virtual vectors: 6u and w. Their components give six degrees of freedom for deformation 
of the basic line of the rod. 

When the explicit dependence of the stress tensor (1.19) on the volume strain tensor (1.13) is known, 
formulas (3.13) take the meaning of generalized constitutive equations. In particular, incremental relations 
(1.22) become, by means of (3.13), the generalized equations 

60X = Do �9 .60U + Dj �9 -60Vj, 60Yi = Di �9 "60U + Dij �9 -60Vj, 

Do = f DJdA, Di = f DJtidA, Dij - / DJtitjdA. 
A A A 
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The tensors 60U and 60Vi are calculated in terms of the independent incremental vectors ~u and w using 
formulas of the type of (3.15). 

For sufficiently smooth force fields, virtual equation (3.11) is written in the Galerkin form 

f [ ( p  + 03x3) �9 ~u + (q + a + x x 3 + 03y3) �9 w]dt3 

c3 

0 3 (3.16) + [(Pn - en3x3) " 6u + (q,~ - en3Y3) �9 w]tz=ln = O, y3 _ ai x Yi ,  

where en3 -= en �9 a3 are components of the unit vector that is normal to the end surface An. Global equality 
(3.16) generates local dynamic equations, which are valid at interior points of the basic line, and conditions 
at boundary points. 

One-dimensional equations (3.4), (3.8), and (3.10)-(3.15) give a weak formulation of the problem of 
deformation of the basic line with independent fields of finite displacements and rotations of its material 
particle-points of the line. Equalities (3.6) and (3.9) reconstruct the volume field displacement and strain 
of the rod. The stress field is calculated by the volume constitutive relations (1.22) or by other relations. 
Extended system (3.4)-(3.15) formulates a generalized model of deformation of a rod-shaped body with rigid 
cross-sections and with separation of the finite-rotation field. The virtual equality (3.11) can be written 
in the form of (3.16) and replaced by local dynamic equations. In this purely mechanical formulation, the 
generalized model contains six primary kinematic parameters: three translational displacement components 
and three rotation components, which are related by a system of differential equations of the twelfth order 
with respect to the contour coordinate. 

The Cosserat line strain model is formulated by the weak equation [5] 

/ (~  . + ~ .  ~ - a W ) d t 3  + ~n . + ~ .  " = 6u ~u (n) O~( n ) 0 
c3 

with the contour density of virtual strain energy 

OW = ~ 3 . 6 0 a  + + . ~3 .03~ .  

The conditions of transformation of the Cosserat model into the model of a rod with rigid cross-sections are 
given by the equalities 

0 3 (3.17) - -P ,  Pn-------Pn, R3_____x 3, q------q, q n - - q , ,  ~3__ai  •  

They show the meaning of the axiomatic force parameters of the Cosserat model as applied to a rod-shaped 
body. 

The above invariant formulations of the equations of deformation of shell- and rod-shaped Cauchy 
bodies are generalized models of the Cosserat type. In addition to the axiomatic Cosserat models, they 
give a construction algorithm for generalized (two- and one-dimensional) constitutive relations which are 
consistent with the local properties of the body material and contain equations for reconstruction of the 
volume displacement, strain, and stress fields in a thin body. 
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